skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Legred, Isaac"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Over the past decade, an abundance of information from neutron-star observations, nuclear experiments and theory has transformed our efforts to elucidate the properties of dense matter. However, at high densities relevant to the cores of neutron stars, substantial uncertainty about the dense matter equation of state (EoS) remains. In this work, we present a semiparametric equation of state framework aimed at better integrating knowledge across these domains in astrophysical inference. We use a Meta-model and realistic crust at low densities, and Gaussian Process extensions at high densities. Comparisons between our semiparametric framework to fully nonparametric EoS representations show that imposing nuclear theoretical and experimental constraints through the Meta-model up to nuclear saturation density results in constraints on the pressure up to twice nuclear saturation density. We also show that our Gaussian Process trained on EoS models with nucleonic, hyperonic, and quark compositions extends the range of EoS explored at high density compared to a piecewise polytropic extension schema, under the requirements of causality of matter and of supporting the existence of heavy pulsars. We find that maximum TOV masses above $$3.2 M_{\odot}$$ can be supported by causal EoS compatible with nuclear constraints at low densities. We then combine information from existing observations of heavy pulsar masses, gravitational waves emitted from binary neutron star mergers, and X-ray pulse profile modeling of millisecond pulsars within a Bayesian inference scheme using our semiparametric EoS prior. With information from all public NICER pulsars (including PSR J0030$$+$$0451, PSR J0740$$+$$6620, PSR J0437-4715, and PSR J0614-3329), we find an astrophysically favored pressure at two times nuclear saturation density of $$P(2\rho_{\rm nuc}) = 1.98^{+2.13}_{-1.08}\times10^{34}$$ dyn/cm$$^{2}$$, a radius of a $$1.4 M_{\odot}$$ neutron star value of $$R_{1.4} = 11.4^{+0.98}_{-0.60}$$\;km, and $$M_{\rm max} = 2.31_{-0.23}^{+0.35} M_{\odot}$$ at the 90\% credible level. 
    more » « less
  2. Neutron star properties depend on both nuclear physics and astrophysical processes, and thus observations of neutron stars offer constraints on both large-scale astrophysics and the behavior of cold, dense matter. In this study, we use astronomical data to jointly infer the universal equation of state of dense matter along with two distinct astrophysical populations: Galactic neutron stars observed electromagnetically and merging neutron stars in binaries observed with gravitational waves. We place constraints on neutron star properties and quantify the extent to which they are attributable to macrophysics or microphysics. We confirm previous results indicating that the Galactic and merging neutron stars have distinct mass distributions. The inferred maximum mass of both Galactic neutron stars, 𝑀pop,EM=2.0⁢5+0.11−0.06⁢𝑀⊙ (median and 90% symmetric credible interval), and merging neutron star binaries, 𝑀pop,GW =1.8⁢5+0.39−0.16⁢𝑀⊙, are consistent with the maximum mass of nonrotating neutron stars set by nuclear physics, 𝑀TOV =2.2⁢8+0.41−0.21⁢𝑀⊙. The radius of a 1.4⁢𝑀⊙ neutron star is 12.2+0.8−0.9  km, consistent with, though ∼20% tighter than, previous results using an identical equation of state model. Even though observed Galactic and merging neutron stars originate from populations with distinct properties, there is currently no evidence that astrophysical processes cannot produce neutron stars up to the maximum value imposed by nuclear physics. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract Neutron stars have solid crusts threaded by strong magnetic fields. Perturbations in the crust can excite nonradial oscillations, which can in turn launch Alfvén waves into the magnetosphere. In the case of a compact binary close to merger involving at least one neutron star, this can happen through tidal interactions causing resonant excitations that shatter the neutron star crust. We present the first numerical study that elucidates the dynamics of Alfvén waves launched in a compact binary magnetosphere. We seed a magnetic field perturbation on the neutron star crust, which we then evolve in fully general-relativistic force-free electrodynamics using a GPU-based implementation. We show that Alfvén waves steepen nonlinearly before reaching the orbital light cylinder, form flares, and dissipate energy in a transient current sheet. Our results predict radio and X-ray precursor emission from this process. 
    more » « less
  4. SpECTRE is an open-source code for multi-scale, multi-physics problems in astrophysics and gravitational physics. In the future, we hope that it can be applied to problems across discipline boundaries in fluid dynamics, geoscience, plasma physics, nuclear physics, and engineering. It runs at petascale and is designed for future exascale computers. SpECTRE is being developed in support of our collaborative Simulating eXtreme Spacetimes (SXS) research program into the multi-messenger astrophysics of neutron star mergers, core-collapse supernovae, and gamma-ray bursts. 
    more » « less
  5. Abstract We present a discontinuous Galerkin-finite difference hybrid scheme that allows high-order shock capturing with the discontinuous Galerkin method for general relativistic magnetohydrodynamics in dynamical spacetimes. We present several optimizations and stability improvements to our algorithm that allow the hybrid method to successfully simulate single, rotating, and binary neutron stars. The hybrid method achieves the efficiency of discontinuous Galerkin methods throughout almost the entire spacetime during the inspiral phase, while being able to robustly capture shocks and resolve the stellar surfaces. We also use Cauchy-characteristic evolution to compute the first gravitational waveforms at future null infinity from binary neutron star mergers. The simulations presented here are the first successful binary neutron star inspiral and merger simulations using discontinuous Galerkin methods. 
    more » « less